Reversible maleimide-thiol adducts yield glutathione-sensitive poly(ethylene glycol)-heparin hydrogels.
نویسندگان
چکیده
We have recently reported that retro Michael-type addition reactions can be employed for producing labile chemical linkages with tunable sensitivity to physiologically relevant reducing potentials. We reasoned that such strategies would also be useful in the design of glutathione-sensitive hydrogels for a variety of targeted delivery and tissue engineering applications. In this report, we describe hydrogels in which maleimide-functionalized low molecular weight heparin (LMWH) is crosslinked with various thiol-functionalized poly(ethylene glycol) (PEG) multi-arm star polymers. Judicious selection of the chemical identity of the thiol permits tuning of degradation via previously unstudied, but versatile chemical methods. Thiol pKa and hydrophobicity affected both the gelation and degradation of these hydrogels. Maleimide-thiol crosslinking reactions and retro Michael-type addition reactions were verified with 1H NMR during the crosslinking and degradation of hydrogels. PEGs esterified with phenylthiol derivatives, specifically 4-mercaptophenylpropionic acid or 2,2-dimethyl-3-(4-mercaptophenyl)propionic acid, induced sensitivity to glutathione as shown by a decrease in hydrogel degradation time of 4-fold and 5-fold respectively, measured via spectrophotometric quantification of LMWH. The degradation proceeded through the retro Michael-type addition of the succinimide thioether linkage, with apparent pseudo-first order reaction constants derived from oscillatory rheology experiments of 0.039 ± 0.006 h-1 and 0.031 ± 0.003 h-1. The pseudo-first order retro reaction constants were approximately an order of magnitude slower than the degradation rate constants for hydrogels crosslinked via disulfide linkages, indicating the potential use of these Michael-type addition products for reduction-mediated release and/or degradation, with increased blood stability and prolonged drug delivery timescales compared to disulfide moieties.
منابع مشابه
Design of Thiol- and Light-sensitive Degradable Hydrogels using Michael-type Addition Reactions.
Injectable depots that respond to exogenous and endogenous stimuli present an attractive strategy for tunable, patient-specific drug delivery. Here, the design of injectable and multimodal degradable hydrogels that respond to externally applied light and physiological stimuli, specifically aqueous and reducing microenvironments, is reported. Rapid hydrogel formation was achieved using a thiol-m...
متن کاملDegradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
Our laboratory is currently exploring synthetic oligo(poly(ethylene glycol)fumarate) (OPF)-based biomaterials as a means to deliver fibroblasts to promote regeneration of central/partial defects in tendons and ligaments. In order to further modulate the swelling and degradative characteristics of OPF-based hydrogels, OPF crosslinking via a radically initiated, mixed-mode reaction involving poly...
متن کاملDesigning Visible Light-Cured Thiol-Acrylate Hydrogels for Studying the HIPPO Pathway Activation in Hepatocellular Carcinoma Cells.
Various polymerization mechanisms have been developed to prepare peptide-immobilized poly(ethylene glycol) (PEG) hydrogels, a class of biomaterials suitable for studying cell biology in vitro. Here, a visible light mediated thiol-acrylate photopolymerization scheme is reported to synthesize dually degradable PEG-peptide hydrogels with controllable crosslinking and degradability. The influence o...
متن کاملHeparin hydrogel sandwich cultures of primary hepatocytes
Long-term in vitro maintenance of primary hepatocytes has been a challenge in hepatic tissue engineering, since these cells dedifferentiate and lose their phenotype in standard culture conditions. Some of the most successful culture systems employ collagen or Matrigel matrices. As an alternative matrix, our laboratory has been exploring the use of heparincontaining hydrogels as scaffolds for cu...
متن کاملSynthesis and characterization of PEG dimethacrylates and their hydrogels.
Facile synthesis and detailed characterization of photopolymerizable and biocompatible poly(ethylene glycol) dimethacrylates (PEGDM) and poly(ethylene glycol) urethane-dimethacrylates (PEGUDM) are described. Poly(ethylene glycol)s of various molecular masses (M(n) = 1000 to 8000 g/mol) were reacted with methacrylic anhydride or with 2-isocyanatoethyl methacrylate to form PEGDMs and PEGUDMs, res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Polymer chemistry
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2013